Synthesis by conjugate radical addition of new heterocyclic amino acids with nucleic acid bases in their side chains

Raymond C. F. Jones,*† Didier J. C. Berthelot and James N. Iley*

Department of Chemistry, The Open University, Walton Hall, Milton Keynes, UK MK7 6AA

Received (in Cambridge, UK) 21st August 2000, Accepted 20th September 2000 First published as an Advance Article on the web 13th October 2000

N-(2-Iodoethyl) and N-(3-iodopropyl)pyrimidines and purines undergo stereoselective conjugate radical addition with an optically active oxazolidinone acceptor to give *syn*adducts that can be converted into pyrimidine and purine amino acids.

Peptide-based nucleic acid analogues (PNAs) have attracted much attention as molecules with the potential to interact with nucleic acid chains.¹ Suggested applications include antisense properties.² Nielsen's PNA has been shown to form duplexes with the complementary DNAs.1 DNA recognition using analogues with a 'real' peptide backbone has, however, proved more elusive. Substituted alanine oligomers 1 (B = pyrimidine or purine base) and homologues 2 (termed α -PNA³) do not demonstrate hybridisation with DNA and insufficient flexibility of the polypeptide chain has been suggested as the cause,⁴ whereas triplex formation between tetrapeptides of type 2 and poly(dT) or poly(dU) has been reported.⁵ Our interest in unusual amino acids led us to propose the homologous amino acids 4 carrying the nucleic acid bases with a 3- or 4-methylene tether to the peptide backbone, as components for PNA variant 3. Residues 4 are also analogues of natural pyrimidine and purine amino acids.⁶ We report here our flexible methodology based on stereospecific radical chemistry.7

In contrast to published routes to residues with C₂ tethers,^{3,5,8} we determined to link preformed heterocycles with the peptide backbone by forming a *carbon–carbon* bond in the tether, and proposed to generate the C(β)–C(γ) bond by conjugate radical addition to chiral acceptor **7** (Scheme 1).⁹ The (*S*)-acceptor **8** was prepared from *S*-methyl-(*R*)-cysteine (Scheme 2) by adaptation of a published sequence to the *N*-benzoyl analogue.¹⁰ *syn*-Sulfone **7** was formed as a 10:1 mixture with its *anti*-diastereoisomer **6** [57% overall from *S*-methyl-(*R*)-cysteine] and easily separated by column chromatography.¹⁰ The *syn*-configuration was supported *inter alia* by mutual NOE enhancements between C-2(H) and C-4(H). Base treatment afforded (*S*)-oxazolidinone **8** as a crystalline solid.

Scheme 2 Reagents: i, NaOH aq.; Bu¹CHO, Dean-Stark; iii, PhCH₂OCOCl (ZCl); iv, oxone[®], MeCN–H₂O; v, DBU.

† Current address: Department of Chemistry, Loughborough University, Leicestershire, UK LE11 3TU; e-mail r.c.f.jones@lboro.ac.uk

DOI: 10.1039/b006843h

S-Methyl-(R)-Cystein The radical precursors were haloalkyl pyrimidines and purines, prepared from the appropriately protected heterocyclic base and an ω -haloalcohol.¹¹ Thus 3-benzoylthymine **9**¹² was coupled with 2-bromoethanol or 3-bromopropanol (DIAD, Ph₃P) to afford the 1-(ω -bromoalkyl) derivatives **10a,b**, respectively (Scheme 3). Attempts to generate radicals from these bromides proved fruitless, so they were converted directly to the iodoalkyl compounds **10c,d**, respectively (NaI, propanone reflux; 85, 87% from **9**).

Scheme 3 Reagents: i, $HO(CH_2)_{n+1}Br$, $PriO_2CN=NCO_2Pri$, Ph_3P ; ii, Nal, Me₂CO reflux; iii, Method A: **10** (1 mol equiv.), Bu₃SnH (1 mol equiv.), AIBN (0.1 mol equiv.), toluene reflux; Method b: **8** (2 mol equiv.), Bu₃SnCl (0.3 mol equiv.), NaBH₃CN (2 mol equiv.), AIBN (0.1 mol equiv.).

Iodide 10c was treated under two protocols differing in the method for radical generation;9 method A: with oxazolidinone 8 (1 mol equiv.) in toluene at reflux containing AIBN (0.1 mol equiv.) and dropwise addition of Bu₃SnH (1 mol equiv.); or method B: with oxazolidinone 8 (2 mol equiv.), Bu₃SnCl (0.3 mol equiv.), NaBH₃CN (2 mol equiv.) and AIBN (0.1 mol equiv.) in tert-BuOH at reflux. Method A afforded the conjugate addition product 11a (26%) and reduction product 12a (24%), whereas method B after 16 h afforded 54% of conjugate addition products consisting of the adduct 11a (24%) and the 3-debenzoylated derivative 11b (30%), with no reduced material. The extent of debenzoylation was time dependent; a reaction time of 40 h led to 11b as the sole addition product (47%). This suggests the deacylation may be via hydridemediated reduction of the out-of-plane benzoyl carbonyl group, a possibility supported by an observed decrease in debenzoylation when less NaBH₃CN is used in method B, and that debenzovlation of 10 occurs in the presence of NaBH₃CN alone.¹³ When 1-iodopropylthymine derivative **10d** was treated under method B, adduct 11c was not found and deacylated adduct 11d was isolated (25%) along with reduction product 12b (75%).

We elected to extend these standard protocols (method B preferred) to other pyrimidines and purines rather than optimise each conjugate addition. Thus 3-benzoyluracil 13^{12} was

Scheme 4 Reagents: i, ii as Scheme 3; iii, Method B.

converted into the 1-(iodoalkyl) derivatives 14a,b (Scheme 4). Method B applied to 14a afforded addition product 15a (41%) and reduction product 12c (46%); when the reaction was left for 2 days, deacylated addition product 15b (51%) was isolated. Homologue 14b gave debenzoylated adduct 15d (44%) with reduced material 12d (51%).[‡] In the purine series, the 9-(iodoalkyl)adenines 17a,b were prepared from (2-methylpropionyl)adenine 16¹⁴ (Scheme 5). Using method B, iodoethyl compound 17a led to the expected mixture of conjugate addition [40%; acylated 18a (26%) and deacylated 18b (14%)] and reduction [36%; acylated 19a (17%) and deacylated 19b (19%)]. Iodopropyl derivative **17b** likewise gave adducts [22%; acylated 18c (12%) and deacylated 18d (10%)] and reduced compounds [34%: acvlated 19c (11%) and deacvlated 19d (23%)]. Finally, a protected guanine **20a**¹⁵ was converted into the 9-iodoethyl derivative 20b (Scheme 6) and method A led to adduct 21 (21%) and reduction to 20c (20%).

Scheme 5 Reagents: i, ii as Scheme 3; iii, Method B.

Scheme 6 Reagents: i, ii as Scheme 3; iii, Method A.

The illustrated conjugate radical addition products were all *syn*-adducts, as determined by NOE studies [enhancements between C-2(H) and C-4(H)]. Only one diastereoisomer was visible in the ¹H NMR spectra at 300 MHz. All of these *syn*-oxazolidinones could be easily and efficiently converted into *N*-benzyloxycarbonyl-(*S*)-amino acids (suitable for peptide coupling) by base hydrolysis (LiOH, aq. THF, 0 °C, 30–60 min; 70–98%). Thus the three thymine-substituted Z-amino acids **22a–c** (having 3- or 4-carbon tethers for the pyrimidine) were prepared from the adducts **11a,b,d**, respectively. The uracil Z-amino acids **22d–g** were likewise prepared from adducts **15a–d**, respectively, as were adenine derivatives **23a–d** (from **18a–d**, respectively) and guanine Z-amino acid **24a** (from **21**). To monitor optical purity, the Z group was removed by hydrogenolysis (Pd–C, EtOH–H₂O; 60–80%) to afford the amino

acids **22h–n**, **23e–g** and **24b**, analysed by esterification (AcCl, EtOH, reflux) and subsequent conversion to the Mosher amides (*R*-3,3,3-trifluoro-2-methoxy-2-phenylpropanoyl chloride, pyr-idine);¹⁶ ¹⁹F NMR spectroscopy revealed, *e.g.* 86–91% e.e. for the amino acids **22i,j,l,m**, and **23f**.

24a; R = Z 24b; R = H

We have thus made available a range of novel pyrimidinyl and purinyl amino acids for application, for example, in PNA variants.

We thank the Open University for financial support (competitive studentship to D. J. C. B.) and the EPSRC National Mass Spectrometry Service Centre (Swansea) for some MS data.

Notes and references

[‡] The yield of **15d** could be increased to 62% by using 5 mol equiv. of acceptor **8** in method B, but we more usually used 2 mol equiv. of this valuable optically active intermediate. When less than 2 mol equiv. NaBH₃CN was used, some of the benzoylated adduct **15c** was isolated.

- 1 For recent reviews, see: B. Hyrup and P. E. Nielsen, *Bioorg. Med. Chem.*, 1996, 4, 5; P. E. Nielsen and G. Haaima, *Chem. Soc. Rev.*, 1997, 26, 73.
- 2 H. K. Larsen, T. Bentin and P. E. Nielsen, *Biochim. Biophys. Acta*, 1999, 1489, 159.
- 3 N. M. Howarth and L. P. G. Wakelin, J. Org. Chem., 1997, 62, 5441.
- 4 See: M. Kuwahara, M. Arimitsu and M. Sisido, *Tetrahedron*, 1999, **55**, 10067, and refs. therein.
- 5 T. Yamakazi, K. Komatsu, H. Umemiya, Y. Hashimoto, K. Shudo and H. Kagechika, *Tetrahedron Lett.*, 1997, 38, 8363.
- 6 See, for example: R. M. Adlington, J. E. Baldwin, D. Catterick and G. J. Pritchard, J. Chem. Soc., Perkin Trans. 1, 1999, 855.
- 7 See: C. J. Easton, *Chem. Rev.*, 1997, **97**, 53, for a review of radical reactions in amino acid synthesis.
- 8 A. Lenzi, G. Reginato and M. Taddei, *Tetrahedron Lett.*, 1995, 36, 1713.
- 9 J. R. Axon and A. L. J. Beckwith, J. Chem. Soc., Chem. Commun., 1995, 549, and refs. therein.
- 10 S. G. Pyne, B. Dikic, P. A. Gordon, B. W. Skelton and A. H. White, *Aust. J. Chem.*, 1993, 46, 73.
- 11 Cf. G. Cadet, C.-S. Chan, R. Y. Daniel, C. P. Davis, D. Guiadeen, G. Rodriguez, T. Thomas, S. Walcott and P. Scheiner, J. Org. Chem., 1998, 63, 4574.
- 12 K. A. Cruickshank, J. Jiricny and C. B. Reese, *Tetrahedron Lett.*, 1984, 25, 681.
- 13 Cf. S. Kim, T. A. Lee and Y. Song, Synlett, 1998, 471, for radical addition to imides.
- 14 J. Zhou, K. Bouhadir, T. R. Webb and P. B. Shevlin, *Tetrahedron Lett.*, 1997, **38**, 4037.
- 15 J. Zhou, J.-Y. Tsai, K. Bouhadir and P. B. Shevlin, Synth. Commun., 1999, 29, 3003.
- 16 J. A. Dale, D. L. Dull and H. S. Mosher, J. Org. Chem., 1969, 34, 2543.